Средства акустической разведки: проводные микрофонные системы и электронные стетоскопы.
ХОРЕВ Анатолий Анатольевич,
профессор, доктор технических наук
СРЕДСТВА АКУСТИЧЕСКОЙ РАЗВЕДКИ:
ПРОВОДНЫЕ МИКРОФОННЫЕ СИСТЕМЫ И ЭЛЕКТРОННЫЕ СТЕТОСКОПЫ
Источник: журнал «Специальная техника и связь» №2 2008 год.
Проводные микрофонные системы
Средства акустической разведки активно используются для перехвата речевой информации из различных помещений. Особенно широко используются средства акустической разведки, скрытно устанавливаемые непосредственно в помещениях. Причем такие средства устанавливаются не только в служебных помещениях, но даже в жилых квартирах. Например, при проведении специальных проверок здания жилого комплекса посольства СССР в Вашингтоне многочисленные системы подслушивания были выявлены в большинстве из 183 квартир сотрудников советских учреждений в США [2, 3].
На стадии строительства или капитального ремонта в помещениях могут быть скрытно установлены миниатюрные микрофоны, соединительные линии которых выводятся в помещения или даже в другие здания, находящиеся за пределами контролируемой зоны, где устанавливается регистрирующая или передающая аппаратура. Такие системы перехвата акустической информации часто называют проводными микрофонными системами.
В проводных системах используются в основном электретные микрофоны с чувствительностью 20 — 60 мВ/Па, обеспечивающие регистрацию речи средней громкости на удалении до 7-10 м от его источника. При этом частотный диапазон составляет от 20 – 100 Гц до 6 – 20 кГц.
Как правило, микрофоны комплексируются с предварительными усилителями. Для передачи информационного сигнала и электропитания усилителей используются двух- или трехпроводные линии. Для питания микрофонов обычно используется постоянное напряжение DC 9 – 15 В.
Внешний вид микрофонов с предусилителями в обычном исполнении представлен на фото 1, 2 [10, 11, 13].
Некоторые микрофонные блоки помимо предварительного усилителя имеют электронную систему включения/выключения микрофона (фото 3). В случае если в помещении разговор прекращается, через определенное время, установленное оператором, микрофон отключается. При появлении акустического сигнала микрофон практически мгновенно (время реакции менее 1 с) включается.
Фото 1. Микрофоны с предусилителями стандартных размеров:
(диапазон частот 20 – 16000 Гц, отношение сигнал/шум 58 дБ, размеры 18x8x6 мм)
Фото 2. Миниатюрный микрофон с предусилителем MC-400
(частотный диапазон 20 – 1000 Гц, отношение сигнал/шум 63 дБ, размеры 6x18x4 мм)
Фото 3. Микрофон с предусилителем и электронной системой включения/выключения (время отключения системы при отсутствии акустического сигнала регулируемое – от 15 с до 10 мин.; дальность перехвата речи – 5 м; диаграмма направленности микрофона – 100°; напряжение питания 3 – 15 В)
Развитие новых технологий, в частности технологии MEMS (Micro Electro Mechanical Systems), привело к созданию принципиально новых цифровых MEMS-микрофонов (иногда их называют кремниевыми микрофонами). Как и обычный электретный микрофон, MEMS-микрофон состоит из гибкой диафрагмы, жесткой подложки и демпфирующего отверстия с электрическим зарядом на подложке. Диафрагма находится в непосредственной близости от подложки, образуя конденсатор. Под воздействием звукового давления диафрагма движется, при этом изменяется емкость между ней и подложкой. Эти изменения измеряются и выводятся в виде электрического сигнала. MEMS-микрофон после изготовления не имеет заряда. Заряд при напряжении 12 В закачивается в подложку с помощью CMOS-схемы. Микросхема поддерживает этот заряд, когда микрофон активирован [4, 7].
MEMS-микрофон выпускаются как без усилителя, так и со встроенным усилителем.
Микрофон в сборке (CMOS + MEMS) заключается в корпус на металлической плате для создания эффекта клетки Фарадея. На подложке смонтированы фильтрующие конденсаторы для защиты от наводок. В этом же корпусе устанавливаются усилитель сигнала, различного вида фильтры, а также аналого-цифровой преобразователь (АЦП). В качестве АЦП наиболее часто используется D-модулятор (рис. 1) [9].
Рис. 1. Внешний вид MEMS-микрофонов в сборке (а),
структурная схема MEMS-микрофона в сборке (б)
MEMS-микрофон обеспечивает равномерную частотную характеристику в звуковом диапазоне от 100 Гц до 10 кГц и имеет очень высокую чувствительность, порядка от 42 до 26 дБ относительно (В/Па), то есть от 8 до 50 мВ/Па [4, 7]. Таким образом, при использовании в проводных системах MEMS-микрофонов в сборке (CMOS + MEMS) в линию передается цифровой импульсный сигнал.
Для повышения качества перехваченных разговоров микрофоны устанавливаются, как правило, вблизи мест возможного ведения разговоров. Чтобы микрофоны не были обнаружены, они скрытно устанавливаются в ограждающие конструкции или камуфлируются под предметы интерьера помещений. Современные технологии позволяют изготавливать субминиатюрные микрофоны, которые легко установить в оконной раме или в раме картины. При правильной установке в ограждающей конструкции (например, в стене здания) субминиатюрный микрофон практически невозможно обнаружить даже нелинейным локатором.
Длина соединительного кабеля может составлять от 50 – 200 м до 5 – 10 км и более, как например, в системе PK-1055 SS [8]. На сравнительно небольшой по размерам катушке помещается 50 – 100 м кабеля (фото 4) [8].
Фото 4. Проводная микрофонная система РК-900
(длина кабеля 100 м)
Для передачи информации, перехватываемой с использованием микрофонов, наряду со специально проложенными кабелями могут использоваться телевизионные кабели, трубы парового отопления, неиспользуемые старые кабели сети 220 В или соединительные линии систем охранной и пожарной сигнализации и т.п. Например, микрофоны, установленные в различных помещениях здания посольства СССР в Вашингтоне, а также одного из зданий в Нью-Йорке, где проживали советские граждане, подсоединялись для передачи информации к специальным водопроводным трубам, используемым для передачи перехваченной информации и питания микрофонов. Обычная металлическая труба покрывалась специальным токонепроводящим материалом (изоляцией), затем наносился токопроводящий слой, и снова ее поверхность покрывалась изоляцией. К специально нанесенному токопроводящему слою и металлу самой трубы и подключались микрофоны [1].
На приемном пункте сигнал, передаваемый микрофоном, поступает на специальный низкочастотный усилитель, а затем записывается или передается по каналу связи на другой приемный пункт.
Внешний вид специальных низкочастотных усилителей приведен на фото 5, 6 [12, 13].
Фото 5. Специальный усилитель низкой частоты
(частотный диапазон 150 – 6000 Гц,
размеры 113x37x75 мм; масса 0,3 кг)
Фото 6. Специальные низкочастотные усилители серии SIM—AULAS NT
(диаметр кабеля 1,9 мм, максимальная длина кабеля 200 м)
Для прослушивания помещений могут использоваться как одноканальные, так и многоканальные системы. В качестве примера одноканальных микрофонных систем можно привести системы PKI 2860 и PKI 2950 (фото 7, 8) [9].
Фото 7. Проводная одноканальная микрофонная система PKI 2860
Фото 8. Проводная одноканальная микрофонная система PKI 2950:
а-специальный усилитель; б — катушка с кабелем
В проводной микрофонной системе PKI 2860 используются субминиатюрные микрофоны с частотным диапазоном от 250 до 3500 Гц. Дальность передачи информации составляет до 500 м. Размеры усилителя 22x64x98 мм, масса 150 г. Питание осуществляется от аккумуляторной батареи напряжением 9 В. Время работы до 50 ч [9].
В проводной микрофонной системе PKI 2950 используются электретные микрофоны с полосой частот от 100 Гц до 7 кГц (отношение сигнал/шум 60 дБ/1 кГц). Катушка с кабелем длиной 100 м имеет размеры 180×60 мм и массу 600 г [9].
Приемный блок системы PKI 2950 обеспечивает максимальный коэффициент усиления в 100 дБ и имеет встроенный пятиполосный эквалайзер (300, 600, 1200, 2400, 4800 Гц). Диапазон регулировки ± 10 дБ. Блок имеет выход на головные телефоны 4 – 16 Ом и линейный выход на 50 кОм. Встроенный аккумулятор 9 В обеспечивает время работы блока не менее 20 ч. Блок имеет массу 750 г и размеры 130x50x150 мм) [9].
К типовой многоканальной системе относится, например, проводная микрофонная система SIM Rotel-30 (фото 9). Система предназначена для прослушивания помещений по специально проложенной двухпроводной линии. К линии может быть подключено до 30 микрофонов. Максимальная длина кабеля – 200 м. Приемный блок имеет размеры 225х200х70 мм. Питание блока осуществляется от сети переменного тока АС 220 В [12].
Фото 9. Проводная микрофонная система:
а – SIM Rotel 1 (одноканальная);
б – SIM Rotel -30 (30-канальная)
В системе SIM Rotel используются электретные микрофоны со встроенными предусилителями и схемами управления. Включение каждого микрофона осуществляется подачей в линию индивидуального кодового сигнала. Размеры микрофонов 9х25 мм. Их питание осуществляется от приемного блока напряжением 12 В. Питание микрофона – DC 12 В [2]. Микрофоны с предусилителями имеют в своем составе полупроводниковые элементы и могут быть обнаружены с использованием нелинейных локаторов.
В целях обеспечения скрытности для прослушивания помещений могут использоваться оптические (оптоволоконные) микрофоны, не имеющие в своем составе полупроводниковых элементов и, следовательно, не обнаруживаемые нелинейными локаторами.
К таким системам относится, например, система PKI 2960 (фото 10, рис. 2) [9]. Оптический (оптоволоконный) микрофон системы PKI 2960 предназначен для передачи акустической информации по оптоволоконному кабелю. Микрофон выполнен в виде пластикового цилиндрического корпуса с торцевым или боковым микрофонным входом, имеет двойной оптоволоконный кабель в тефлоновой оболочке с оптическими разъемами для подключения устройства обработки сигнала (фото 10). Частотный диапазон микрофона от 250 до 4500 Гц. Микрофон имеет очень высокую чувствительность от 0,3 до 1,8 В/Па (табл. 1) [9].
Фото 10. Оптический (оптоволоконный) микрофон
Рис. 2. Устройство обработки сигналов системы PKI 2960
Устройство обработки сигнала выполнено в небольшом пластиковом корпусе с разъемами для подключения внешнего источника питания, записывающего устройства и оптоволоконного кабеля (рис. 2). Оно имеет излучающий светодиод и приемный фотодиод. Излучаемый световой сигнал по одному из оптоволоконных кабелей попадает на звуковую мембрану, находящуюся в корпусе микрофона. Отраженный сигнал, модулированный акустическим сигналом через другой оптоволоконный кабель, попадает на приемный фотодиод. Далее устройство обработки выделяет акустическую составляющую сигнала. Стандартно выпускаются 2 модификации системы, отличающиеся длиной оптоволоконного кабеля — 10 и 20 м.
Таблица 1. Технические характеристики оптического (оптоволоконного) микрофона PKI 2960
Характеристика | Значение |
Диаграмма направленности | круговая |
Диапазон частот, Гц | 250 – 4500 |
Чувствительность, В/Па | 0,3 – 1,8 |
Соотношение сигнал/шум (на частоте 1 кГц), дБ, не менее | 65 |
Нелинейные искажения (при уровне сигнала 84 дБ) | менее 1% |
Максимальное статическое давление на мембрану, дБ, не менее | 130 |
Напряжение питания (DC), В | 9 –12 |
Потребляемый ток, мА, не более | 80 |
Масса микрофонной головки, г | 1 |
Размеры микрофонной головки, мм |