Комбинированные датчики охранной сигнализации.

Комбинированные датчики охранной сигнализации.

Комбинированные датчики охранной сигнализации

Андреев С.П.
КОМБИНИРОВАННЫЕ ДАТЧИКИ ОХРАННОЙ СИГНАЛИЗАЦИИ

Источник: журнал «Специальная Техника»

Комбинированные датчики, называемые также датчиками двойной технологии, появились относительно недавно и в настоящее время становятся все более популярными. Преимущество таких датчиков заключается в существенном снижении частоты ложных тревог. Это достигается за счет того, что в одном датчике используется комбинация двух различных физических принципов обнаружения. Сигнал тревоги выдается только в том случае, если одновременно или в течение небольшого интервала времени срабатывают оба детектора. Для снижения частоты ложных тревог используемые принципы обнаружения должны быть такими, чтобы помехи, вызывающие ложные срабатывания, по-разному воздействовало на каждый составляющий комбинацию детектор.

Наибольшее распространение в настоящее время получила комбинация микроволнового активного и ИК-пассивного принципов обнаружения. Гораздо реже используется комбинация ультразвукового и ИК детекторов. Существуют также отдельные образцы датчиков, в которых используются три различных физических принципов обнаружения, однако такие датчики пока не завоевали популярности. В данном обзоре мы будем рассматривать самую распространенную группу датчиков двойной технологии – ИК+микроволновые. Прежде чем перейти к подробному анализу особенностей датчиков двойной технологии, целесообразно остановиться на изложении основных принципов микроволнового метода обнаружения.

МИКРОВОЛНОВЫЙ МЕТОД ОБНАРУЖЕНИЯ

Принцип действия микроволнового активного метода обнаружения основан на излучении в окружающее пространство электромагнитного поля СВЧ диапазона и регистрации его изменений, вызванных отражением от нарушителя, движущегося в зоне чувствительности датчика. Микроволновые активные датчики, реализующие этот метод, относятся к классу детекторов движения.

Микроволновые датчики состоят из следующих основных элементов:

    • СВЧ генератора;
    • антенной системы, создающей электромагнитное поле в окружающем пространстве, принимающей отраженные сигналы, формирующей диаграмму направленности датчика и определяющей форму пространственной зоны чувствительности;
    • СВЧ приемника, регистрирующего изменение характеристик принятого сигнала;
    • блока обработки, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех.

Генератор микроволнового датчика предназначен для формирования СВЧ сигнала – обычно в 3-х сантиметровом диапазоне длин волн (10…11 ГГц), в последнее время производителями датчиков начали осваиваться и более коротковолновые диапазоны (24…25 ГГц). Первоначально в микроволновых датчиках использовались генераторы на диодах Гана, в настоящее время производители перешли на транзисторные генераторы. Современные СВЧ генераторы позволяют формировать стабильный сигнал с требуемыми характеристиками при малых габаритах и низком потреблении.

В качестве антенной системы в микроволновых датчиках обычно используется единственная совмещенная приемо-передающая антенна. В большинстве современных датчиков применяются микрополосковые антенны, обладающие меньшими габаритами, весом и стоимостью по сравнению с широко использовавшимися ранее рупорными антеннами. Однако рупорные антенны продолжают применяться некоторыми производителями датчиков и в настоящее время, так как обеспечивают несколько более высокую точность формирования диаграммы направленности. Вообще говоря, формы зон чувствительности микроволновых детекторов не отличаются таким многообразием, как у ИК-пассивных датчиков. Конфигурация зоны чувствительности микроволновых датчиков представляет собой объемное тело, напоминающее по форме эллипсоид. В идеале от антенной системы требуется излучение (и, соответственно, прием) только в переднее полупространство без заметного заднего и бокового излучения (с целью минимизации ложных срабатываний). Для такой идеальной антенной системы зона чувствительности представляет собой объемное тело каплевидной формы (см. рисунок), характеризующееся углами обзора A (в горизонтальной и вертикальной плоскостях), длиной Rmax (максимальной дальностью действия) и шириной D (высотой). Именно эти параметры обычно приводятся в документации на микроволновые датчики (иногда дополняются величинами контролируемых датчиком площади и объема помещения). Типичные значения размеров зоны чувствительности для микроволновых датчиков составляют:

 

Rmax=10…15 м, D=5…10 м, A=60О…100О.

Зона чувствительности, формируемая реальной антенной системой, отличается от идеальной – из-за заднего и бокового излучения/приема. Отношение дальностей обнаружения в заднем и переднем полупространствах Rз/Rmax может составлять 0,03…0,1.

Приведенные выше характеристики справедливы для свободного пространства. При расположении датчика в помещении форма зоны чувствительности существенно искажается. Из-за отражения от ограждающих конструкций (коэффициент отражения по полю от кирпичных и железобетонных стен составляет 0,3…0,6) электромагнитное поле «заполняет» с большей или меньшей степенью равномерности практически все помещение, если размеры этого помещения не превышают размеры зоны чувствительности. С другой стороны, тонкие перегородки из легких материалов, деревянные двери, стекла, шторы не являются существенной преградой для электромагнитного поля, поэтому зона чувствительности может распространяться и за пределы охраняемого помещения, что может привести к ложным срабатываниям, например при проходе людей по коридору или проезде транспорта у окон первого этажа. В то же время, крупногабаритные предметы (шкафы, сейфы и т.п.), находящиеся в помещении, создают «тени» (зоны нечувствительности). Все это должно учитываться при выборе места установки и количества используемых датчиков.

Перемещение нарушителя приводит к появлению изменяющегося во времени отраженного сигнала. Здесь различают два эффекта: изменение пространственной картины стоячих волн и частотный сдвиг отраженной от движущегося человека волны (эффект Доплера). Микроволновые датчики, основанные на регистрации первого эффекта, называются амплитудно-модуляционными, второго – доплеровскими. Вообще говоря, оба этих эффекта неразрывно связаны, имеют общую природу и одинаковое проявление, и поэтому практически неразделимы. По сути, отличие проявляется в структуре построения и характеристиках СВЧ приемника микроволнового датчика. Наибольшее распространение получили доплеровские микроволновые датчики, имеющие более высокую чувствительность. Доплеровский сдвиг частоты df возникает при движении нарушителя вдоль луча – частота отраженного сигнала возрастает при движении к датчику и уменьшается при движении от датчика. Абсолютная величина df пропорциональна частоте зондирующего сигнала f и составляющей скорости движения вдоль луча. Зависимости df от представлены на рисунке, из которого видно, что типичные значения регистрируемых датчиком величин доплеровского сдвига лежат в диапазоне частот сетевой помехи 50/60 Гц и ее гармоник. Для борьбы с этими помехами современные микроволновые датчики оснащаются режекторными фильтрами (в том числе адаптивными) гармоник сети. Другими источниками помех, вызывающих ложные срабатывания доплеровских микроволновых датчиков, являются отражения от вибрирующих, колеблющихся и движущихся хорошо отражающих объектов. Такими источниками ложных срабатываний могут быть, например:

    • установочная арматура включенных ламп дневного света;
    • работающее электрооборудование, создающее вибрацию;
    • потоки дождевой воды на стеклах;
    • движение воды в пластиковых трубах;
    • мелкие животные и птицы.

В прежние годы, до широкого распространения ИК-детекторов, микроволновые активные датчики пользовались большой популярностью. Сейчас и спрос, и предложения этих датчиков существенно снизились. Основные характеристики микроволновых датчиков российского производства, предназначенных для установки внутри помещений, приведены в табл.1. Все эти датчики имеют сплошную объемную зону чувствительности, предусмотрена возможность регулировки в широких пределах максимальной дальности обнаружения. Рекомендуемая высота установки составляет 2…2,5 м. Допускается эксплуатация нескольких датчиков в одном помещении – для исключения взаимного влияния сигналов возможен выбор одной из четырех рабочих частот.

Таблица 1.

Характеристика

Аргус-2

Аргус-3

Волна-5

    Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
    Принять