Aplicación de DYKR para la detección de explosivos.

Aplicación de DYKR para la detección de explosivos..

Aplicación de DYKR para la detección de explosivos.

GRECHISHKIN Vadim Sergeevich, Doctor en Ciencias Físicas y Matemáticas, Profesor,
Andrey Alekseevich SHPILEVOY, Candidato de Ciencias Físicas y Matemáticas, Profesor Asociado,
PERSICHKIN Andrey Andreevich.

USO DE DECAYERS PARA LA DETECCIÓN DE EXPLOSIVOS  

Uno de los métodos más fiables para detectar sustancias narcóticas y explosivas es el método de resonancia cuadrupolar nuclear (NQR). Desde un punto de vista tecnológico, además de su fiabilidad, los detectores de explosivos y drogas basados ​​en NQR son convenientes porque los espectros de estas sustancias están localizados en la región de baja frecuencia (por debajo de 6 MHz) y la detección se realiza mediante resonancia de Núcleos de nitrógeno 14N, que se incluyen en casi todas estas sustancias.

Sin embargo, existen dificultades para detectar señales NQR de núcleos cuadrupolares ligeros (incluido el 14N). Esto se debe al hecho de que los núcleos ligeros tienen un momento cuadripolar pequeño y la frecuencia NQR y la intensidad de la línea espectral dependen de su valor. Además, la amplitud de la señal inducida en la bobina receptora es proporcional al cuadrado de la frecuencia, y surgen dificultades de detección en frecuencias inferiores a 1 MHz.

El mayor problema a este respecto es la detección mediante métodos NQR de explosivos basados ​​en TNT, con frecuencias NQR de 840 y 740 kHz. La intensidad de las líneas en estas frecuencias es baja; además, el TNT está sujeto a biotransformación, lo que amplía aún más las líneas espectrales.

Para aumentar la sensibilidad al detectar estos núcleos ligeros, se utilizan con éxito técnicas indirectas, como la desmagnetización adiabática y varios métodos de resonancia de cuadrupolo nuclear doble (DNQR).

 Adiabático desmagnetización

La esencia de la desmagnetización adiabática [2] es el “enfriamiento del sistema cuadrupolo debido al contacto térmico con un sistema magnético preenfriado.

La muestra se coloca inicialmente en un campo magnético externo H0, donde los espines del sistema de RMN están polarizados en la dirección del campo magnético. Después de esto, la muestra se desmagnetiza adiabáticamente en un tiempo de ~0,1 s. La desmagnetización adiabática se puede llevar a cabo expulsando mecánicamente la muestra del espacio de un imán permanente.

Durante la desmagnetización adiabática, la temperatura del sistema de giro disminuye al valor

, (1)

donde Hl es el campo local en la región de espín del sistema magnético.

Cuando una muestra ingresa a un campo magnético cero en un cierto valor del campo magnético los niveles de NMR y NQR se cruzan y se produce el contacto térmico. entre los sistemas de espín: núcleos y protones, como resultado de lo cual el sistema cuadrupolo se enfría a la temperatura del sistema magnético, porque La capacidad calorífica de un sistema magnético es, por regla general, mucho mayor que la de un sistema cuadrupolar. Las frecuencias de los sistemas cuadrupolo y magnético están alineadas:

, (2)

donde g es la relación giromagnética de los espines del sistema magnético, wQ es la frecuencia NQR. Al mismo tiempo, para concentraciones bajas de núcleos cuadrupolos, la relación señal-ruido aumenta en vp/vQ.

Resonancia cuadrupolo nuclear doble

El fenómeno DNC [6] se observa en muestras que tienen dos sistemas de espín acoplados entre sí mediante interacciones dipolo-dipolo. Una señal NQR débil de un sistema de espín se detecta indirectamente mediante un cambio en una señal fuerte (doble NQR-NQR) o una señal de RMN (doble NQR-NMR) de otro sistema de espín.

Doble NQR-NQR, o doble resonancia cuadrupolo pura, dividida en doble resonancia espín-eco, doble resonancia giratoria, doble resonancia estacionaria y doble resonancia no resonante.

En RMN-NQR dual, independientemente del método utilizado, el sistema P magnético se enfría primero mediante desmagnetización adiabática, luego el sistema Q cuadrupolo se somete a la máxima perturbación posible y se establece contacto con el sistema P. A continuación se mide la magnetización residual del sistema P.

Cuando se utilizan estos métodos, la sensibilidad de detección aumenta entre uno y dos órdenes de magnitud. Sin embargo, para su uso práctico con el fin de detectar sustancias a distancia, existen una serie de dificultades graves, la principal de las cuales es la adquisición remota de un campo magnético relativamente grande (alrededor de 0,2 Tesla) y la necesidad de apagarlo en un período de tiempo muy corto. En los espectrómetros DNC estacionarios, esto se logra magnetizando una muestra dentro de un solenoide alimentado por una fuente de corriente de más de 100 A, y la conmutación rápida del campo se logra mediante la expulsión mecánica o neumática de la muestra del espacio del solenoide. Está claro que esta técnica es inaceptable para la detección remota.

Como solución a este problema, un grupo liderado por el profesor

V.S. Grechishkin propuso utilizar un solenoide semitoroidal [1] y, para obtener un campo magnético más alto, utilizar materiales magnéticos blandos en el diseño del núcleo del solenoide.

En la Fig. La Figura 1 muestra un diagrama de bloques del espectrómetro remoto DYAKR.


Arroz. 1 Diagrama de bloques del espectrómetro remoto DYAKR

solenoide sesquitoroidal 1 mira al suelo con sus extremos y se alimenta de una corriente fuente 5. El solenoide crea un campo magnético cerrado paralelo a la superficie de la tierra, en puntos ubicados en el eje de simetría del imán. El campo provoca la polarización de los momentos magnéticos de los protones en la muestra 4.

Para el experimento DNC, el sistema cuadrupolo, que es un conjunto de núcleos de nitrógeno de la muestra, se satura mediante una bobina 2 de un potente generador 6 con una radiofrecuencia electromagnética. campo, lo que conduce a la igualación de los niveles de núcleos de nitrógeno y a un aumento en la temperatura de espín del sistema de espín. Después de activar el campo magnético B0 del solenoide 1, en el momento de la intersección de los niveles de energía de los sistemas NQR y NMR, se produce el contacto térmico. En la bobina receptora 3 se induce una señal de inducción a la frecuencia de los protones (sistema de RMN) y se procesa mediante un espectrómetro de RMN pulsado 7. La señal NQR se detecta mediante una disminución en la amplitud de la señal de inducción de RMN. Todo el sistema está controlado por el programador 8, los resultados se muestran en el dispositivo de grabación 9.

Para calcular el valor magnético sistema usaremos el método dado en [8 ].


a)

b)
Fig. 2. a – electroimán; b – axonometría

A la hora de determinar las características del campo de un sistema magnético, haremos una serie de suposiciones que facilitarán la solución de nuestro problema:

  • Consideraremos que el ancho b (Fig. 2b.) del sistema magnético y la profundidad h son infinitos, lo que nos permite considerar la imagen del campo electromagnético como bidimensional en lugar de volumétrica;
  • Consideraremos que la intensidad del campo del sistema magnético es independiente del tiempo, es decir considere un campo magnético estático;
  • asumiremos que la permeabilidad magnética del núcleo es infinitamente grande.

Aproximadamente la intensidad del campo magnético se puede encontrar de acuerdo con la ley de corriente total de la expresión:

, (4)

donde w es el número de vueltas del devanado, Im es la amplitud de la corriente en el devanado, bh es el área de la sección transversal del núcleo en el espacio de trabajo, minit es la permeabilidad magnética inicial del núcleo, li es la longitud de la línea de campo promedio de la i-ésima sección del circuito del circuito magnético central, si es el valor promedio del área de la sección transversal de la i-ésima sección del circuito del circuito magnético central.

Se puede demostrar que para valores de y (Figura 2a) que exceden la mitad del ancho del espacio de trabajo (y > 0,5l0), las líneas de módulos iguales de intensidades de campo toman la forma de semicírculos. Dicho campo se puede calcular como el campo de un único conductor portador de corriente:

, (5)

, (6)

, (7)

donde Hx(0, y) – intensidad de campo en el punto x = 0, y > 0.

Obtenemos:

. (8)

La foto 1 muestra un solenoide semitoroidal experimental. Se utilizó acero eléctrico como material central.


Foto 1.

El electroimán experimental tiene los siguientes parámetros:

  — número de vueltas W = 743;
    — número de capas de bobinado N = 15;
    — diámetro del alambre d = 1,4 mm;
    — área de la sección transversal de los polos magnéticos S = 4 x 8 cm = 32 m2. ver;
    — diámetro exterior del electroimán D1 = 17 cm;
    — diámetro interno del electroimán D2 = 7 cm;
    — distancia entre polos l0 = 7 cm.

En la figura. La Figura 3 muestra las líneas del campo magnético creadas por el sistema magnético.


 Fig. 3. Líneas de campo magnético


Fig. 4. Experimental y calculado según la fórmula 7
dependencia del campo de la coordenada y:
1 – dependencia experimental;
2 – dependencia calculada

La discrepancia entre la teoría y el experimento se debe al hecho de que en los cálculos se asumió que la longitud de los postes era bastante grande (tiende a infinito en comparación con el ancho del espacio de trabajo). El diseño probado es un sesquitoroide con polos muy cortos, debido a esto hay una “flexión de las líneas magnéticas desde la dirección y (Fig. 3), lo que conduce a un aumento en las longitudes de las líneas magnéticas y, en consecuencia, a una disminución más rápida del valor del campo magnético con la distancia.


Fig. 5. DYAKR en TNT (9,10)

Conclusión

De los cálculos anteriores y los resultados experimentales, se pueden sacar las siguientes conclusiones sobre el diseño del sistema magnético y la posibilidad de su uso para la detección remota de espectros de resonancia nuclear

1. La configuración de electroimán más óptima para obtener de forma remota un campo magnético es uno y medio.

2. Para obtener las mejores características del campo magnético y la posibilidad de un cálculo teórico preciso de los parámetros en el diseño de un sistema basado en uno y medio, los extremos de los polos deben extenderse en una cierta cantidad L, como se muestra en la siguiente figura. 6.


Fig. 6. Núcleo con extremos alargados

Esto reducirá la distorsión de las líneas eléctricas a partir de los valores calculados. Además, este diseño permitirá, siempre que exista un devanado multicapa, aumentar el número de vueltas de la bobina, lo que conducirá a un aumento del flujo magnético.

3. El material más eficaz para el núcleo de un sistema magnético son los materiales magnéticos blandos con alta permeabilidad magnética: la aleación permanente, sin embargo, debido al efecto de la saturación magnética, el valor máximo posible del campo magnético obtenido en dicho núcleo es de aproximadamente 0,8. Tesla. En realidad, por motivos de diseño (tamaño del hueco, dimensiones geométricas del núcleo, etc.), este valor será entre 4 y 5 veces menor. Por ejemplo, para el núcleo utilizado en nuestro experimento a una distancia de 3 cm, con una corriente de 50 amperios, la intensidad del campo magnético sería de aproximadamente 0,2 Tesla, lo que correspondería a una frecuencia de resonancia de protones de aproximadamente 8,5 MHz. Este valor es probablemente la frecuencia límite a la que se pueden realizar experimentos para estudiar resonancias nucleares con el diseño especificado del sistema magnético.

4. Para aumentar la uniformidad del campo magnético del sistema, es necesario elegir el ancho del núcleo magnético lo más grande posible en comparación con el espacio de trabajo l del sistema magnético.

Referencias

1. Grechishkin V.S., Grechishkina R.V., Shpilevoy A.A., Persichkin A.A., Hong Heo. Registro remoto de espectros de resonancia de cuadrupolo nuclear doble. Óptica y espectroscopia, 2003, v. 94, núm. 3, p. 392 – 393.
2. Anferov V.P., Grechishkin V.S. y Sinyavsky N.Ya. Desmagnetización adiabática en métodos NQR directos. Noticias de la Academia de Ciencias de la URSS, serie física, Moscú, 1981, vol 45, núm. 3, págs. 551 – 553.
3. M. Nolte, A. Privalov, J. Altmann, V. Anferov y F. Fujara. 1H— Relajación cruzada de 14N en trinitrotolueno: un paso hacia una mejor detección de minas terrestres. J.Phys.D: Appl.Phys. 35(2002), 939 – 942.
4. O. Lips, A. F. Privalov, S. V. Dvinskikh y F. Fujara. Diseño de imán con alta homogeneidad de B0 para aplicaciones de RMN de ciclo rápido de campo. Revista de Resonancia Magnética, 149(2001), 22 – 28.
5. V.S. Grechishkin. Interacciones cuadrupolares nucleares en sólidos. M.: Nauka, 1973.
6. V.P. Anferov, V.S. Grechishkin, N.Ya. Sinyavsky. Resonancia de espín nuclear. Editorial de la Universidad Estatal de Leningrado, 1990.
7. G. Burke. Libro de referencia sobre fenómenos magnéticos. M.: Energoatomizdat, 1991.
8. N.P. Vashkevich, N.P. Sergeev, G.N. Chizhukhin. Tecnología electromagnética. M.: Escuela Superior, 1975.
9. Grechishkin V.S., Anferova L.V. Uso del principio de Bohr para señales NQR durante la remoción de minas./Equipo especial, 2004, No. 3, p. 42 – 49.
10. Grechishkin V.S., Shpilevoy A.A., Burmistrov V.I. Sobre la posibilidad de utilizar NQR para detectar explosivos en el cuerpo humano./Equipo especial, 2004, No. 5, p. 29 – 35.

    Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
    Принять